Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans.
نویسندگان
چکیده
Antifungal agents exert their activity through a variety of mechanisms, some of which are poorly understood. We examined changes in the gene expression profile of Candida albicans following exposure to representatives of the four currently available classes of antifungal agents used in the treatment of systemic fungal infections. Ketoconazole exposure increased expression of genes involved in lipid, fatty acid, and sterol metabolism, including NCP1, MCR1, CYB5, ERG2, ERG3, ERG10, ERG25, ERG251, and that encoding the azole target, ERG11. Ketoconazole also increased expression of several genes associated with azole resistance, including CDR1, CDR2, IFD4, DDR48, and RTA3. Amphotericin B produced changes in the expression of genes involved in small-molecule transport (ENA21), and in cell stress (YHB1, CTA1, AOX1, and SOD2). Also observed was decreased expression of genes involved in ergosterol biosynthesis, including ERG3 and ERG11. Caspofungin produced changes in expression of genes encoding cell wall maintenance proteins, including the beta-1,3-glucan synthase subunit GSL22, as well as PHR1, ECM21, ECM33, and FEN12. Flucytosine increased the expression of proteins involved in purine and pyrimidine biosynthesis, including YNK1, FUR1, and that encoding its target, CDC21. Real-time reverse transcription-PCR was used to confirm microarray results. Genes responding similarly to two or more drugs were also identified. These data shed new light on the effects of these classes of antifungal agents on C. albicans.
منابع مشابه
Postantifungal effects of echinocandin, azole, and polyene antifungal agents against Candida albicans and Cryptococcus neoformans.
The postantifungal effect (PAFE) of fluconazole, MK-0991, LY303366, and amphotericin B was determined against isolates of Candida albicans and Cryptococcus neoformans. Concentrations ranging from 0. 125 to 4 times the MIC were tested following exposure to the antifungal for 0.25 to 1 h. Combinations of azole and echinocandin antifungals (MK-0991 and LY303366) were tested against C. neoformans. ...
متن کاملRole of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene.
Candida infections frequently involve drug-resistant biofilm growth on device surfaces. Glucan synthase gene FKS1 has been linked to triazole resistance in Candida biofilms. We tested the impact of FKS1 modulation on susceptibility to additional antifungal classes. Reduction of FKS1 expression rendered biofilms more susceptible to amphotericin B, anidulafungin, and flucytosine. Increased resist...
متن کاملDeletions of the endocytic components VPS28 and VPS32 in Candida albicans lead to echinocandin and azole hypersensitivity.
Vps28p and Vps32p act in both the endocytic and the pH signaling pathways in yeasts and are required for Candida albicans virulence. Here, we show that deletions of VPS28 and VPS32 increase the susceptibility of C. albicans to cell wall disruption agents, echinocandin and azole antifungal agents.
متن کاملEffect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and -susceptible Candida albicans isolates
Background and Purpose: Candida albicans is the most common Candida species (spp.) isolated from fungal infections. Azole resistance in Candida species has been considerably increased in the last decades. Given the toxicity of the antimicrobial drugs, resistance to antifungal agents, and drug interactions, the identification of new antifungal agents seems essential. In this study, we assessed t...
متن کاملGenome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae.
Antifungal compounds exert their activity through a variety of mechanisms, some of which are poorly understood. Novel approaches to characterize the mechanism of action of antifungal agents will be of great use in the antifungal drug development process. The aim of the present study was to investigate the changes in the gene expression profile of Saccharomyces cerevisiae following exposure to r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 49 6 شماره
صفحات -
تاریخ انتشار 2005